
Scalable Defect Mapping and Configuration of Memory-Based
Nanofabrics

Chen He1, Margarida F. Jacome, and Gustavo de Veciana
Department of Electrical and Computer Engineering

University of Texas at Austin
{che,jacome,gustavo}@ece.utexas.edu

1Also with Freescale Semiconductor, Inc.

Abstract— Producing reliable nanosystems requires effectively address-
ing the high defect densities projected for nanotechnologies. Defect
avoidance methodologies based on reconfiguration offer a promising
solution to achieve defect tolerance. The idea is to start by obtaining
a defect map of the target nanofabric, and then configure the desired
functionality ‘around’ its defective components. In this paper, we argue
for the suitability of memory-based computing nanofabrics, address
the level of granularity at which defect mapping and configuration
should be performed on such fabrics, and discuss the role of hierarchy
towards controlling complexity. We then propose a novel group testing
method to enable self-testing and self-configuration for appropriately
architected memory-based nanofabrics. The proposed testing method is
scalable and simple, in that it enables the entire fabric to be tested and
configured using a relatively small number of easily configurable triple-
module-redundancy (TMR) test tiles executing concurrently on different
regions of the target nanofabric. Our experimental results demonstrate
the effectiveness of the proposed method for a representative set of
benchmark kernels.

I. INTRODUCTION

Significant advances have been made towards realizing the promise
of emerging nanotechnologies, including devising novel nanoelec-
tronic devices and successfully assembling them into logic gates and
memory arrays [1], [2], [3]. These striking successes are at the basis
of current projections placing the ability to manufacture large-scale
computation nanofabrics in a 10-15 year window [4].

Yet, if this ambitious timeline is to be met, it is of paramount
importance to devise novel system architectures and design paradigms
that can effectively address the tremendous reliability and scalability
challenges intrinsic to nanotechnologies [5]. Specifically, the afore-
mentioned nanofabrics are expected to exhibit a high density of hard
faults or defects as well as a high susceptibility to soft or transient
faults [4], [6], [7]. As technologies mature, one may expect some
improvements in this arena, yet the fundamental reliability ‘problem’
will persist. Indeed, decreasing the size of structures increases the
ratio of surface area to volume and, thus, naturally occurring im-
perfections on materials’ surfaces or boundaries will more severely
compromise our ability to ensure that a fabric’s interconnects and
devices will be appropriately formed. Furthermore, at the reduced
scales associated with nanoelectronic devices, the energy required
to cause faults decreases and, thus, the flux density of particles
able to cause errors quickly increases. These observations point to
a reliability problem which is intrinsic to nanoscale regimes and is
thus here to stay. Moreover, in order to leverage the unprecedented
densities afforded by nanotechnologies (on the order of 1012 devices
per cm2), the scalability of computing architectures (in terms of per-
formance/speed and power) and the scalability of associated design
and test methodologies (in terms of complexity and practicality) will
be critical.

Early on, the creators of TERAMAC [8] identified the possibility
of utilizing reconfiguration to achieve tolerance to hard defects in

systems targeted at emerging nanotechnologies [6], since the under-
lying assumptions of such an approach’s – sufficient communication
bandwidth and abundant redundant resources – would still be valid at
the nanoscale level of integration. Furthermore, nanostructures well
suited to building reconfigurable computational fabrics have already
been demonstrated, see e.g., [1], [9], [10], making reconfiguration-
based approaches to defect avoidance promising, see also [6]. Indeed,
even if mapping defects and then configuring the target functionality
around such defects, on a per-chip basis, is a challenging task, the
alternative – using brute force redundancy (temporal and/or spatial)
to ensure a sufficiently high probability of correct chip operation
– would likely be very inefficient in terms of power/energy, incur
a substantial performance/delay overhead, and would ultimately be
limited by the reliability of the required arbitration circuits, see e.g.,
[11], [12]. Coding does not provide a reasonable alternative either.
In [13], for example, Von Neuman’s multiplexing scheme is used to
achieve soft fault tolerance – specifically, the paper proposes a multi-
stage multiplexing scheme with restoration to reduce redundancy
overheads. However, the authors admit that the resulting overheads
are still excessive, and suggests that a defect avoidance technique
based on reconfiguration would be more effective in terms of handling
defects [14].

In order to establish the novelty and relevance of our paper, we
start by making an important initial observation: the scalability and
practicality of any reconfiguration-based defect-avoidance approach
is strongly predicated on the type and granularity of the primitive
programmable elements adopted for the target nanofabric, as well as
on the fabric’s overall organization. Specifically, a primary concern
should be to architect the nanofabric so as to enable each chip
to execute its own standard self-testing procedure, followed by a
self-configuration step, requiring minimal off-line processing (ideally
none). A seminal defect avoidance approach for nanotechnologies
was proposed in [9], [15], where the target reconfigurable nanofabric
is a large regular grid of nanoblocks, each of which capable of
implementing a small logic block, with only a few gates. Defects
on the grid’s nanoblocks are first mapped on each chip, using a
two-phase group testing technique (see details in Section IV). Then,
for each chip and associated defect map, a feasible configuration is
synthesized (off-line) realizing the application functionality ‘around’
defective nanoblocks, and finally the corresponding chip is configured
accordingly. Unfortunately, this approach faces substantial limitations
and scalability challenges. In particular, it requires off-line processing
specific to each individual chip, which is a potential show stopper
to achieving cheap and fast mass-production. A central problem
is the small level of granularity at which defect mapping and
configuration are performed, making it very challenging to implement
and orchestrate the full process entirely within the chip.

Ideally, one would like to use the processing power of the fabric



itself to perform the defect mapping and configuration tasks, in a
simple way. The abstract nanofabric architecture we proposed in
[11], [12] shows definitive promise in that direction, that is, in
terms of enabling scalable self-testing and self-configuration methods
for defect prone nanotechnologies. Yet, in [11], [12] we did not
provide discussion, or practical insight, on how the fabric’s primitive
elements could be (tentatively) implemented using programmable
nanostructures described in the current literature (e.g., [1], [2]). Since
the adopted primitive elements are much coarser than those used in
previous approaches, e.g., [15], [10], demonstrating their practicality
is very critical. Moreover, in [11], [12] we did not discuss on how
to actually implement the suggested tile-based self-testing method.

Accordingly, in this paper we revisit the abstract nanofabric
architecture proposed in [11] and address a number of important
open issues. Specifically, we first argue for the promise of ‘memory-
based computing’ in the context of emerging nanotechnologies (see
also [6]). We then revisit the reconfigurable memory-based fabric
architecture, assess its adequacy in terms of supporting scalable defect
avoidance methods, and discuss possible implementations for some
of its key elements. Furthermore, we consider the self-testing idea
suggested in [11] and propose a detailed group testing methodology
and a concrete potential design of the required supporting circuitry,
relying on programmable nanostructures described in the current
literature. Finally, we discuss critical trade-offs between testing
performance and complexity associated with the proposed method.

The paper is organized as follows. In Sections 2 and 3 we argue
on the suitability of memory-based computing nanofabrics, address
the level of granularity at which defect mapping should be performed
on such fabrics, and discuss the role of hierarchy towards controlling
complexity. We then review the nanofabric architecture adopted in
the paper and provide potential implementation solutions for some
of its key elements. In Section 4 we review previous relevant work
in group testing. In Section 5 we propose a detailed group testing
methodology for defect mapping on our target nanofabric. Possible
designs of required supporting circuitry are presented and analyzed
in Section 6. Experimental results showing the effectiveness of the
proposed method are given in Section 7. Finally, Section 8 concludes
the paper.

II. A CASE FOR ‘COARSE-GRAINED’ MEMORY-BASED

COMPUTING NANOFABRICS

Computers built solely of wires, switches and memory-based look-
up tables (LUTs), i.e., requiring no traditional logic gates (or very
few of these), are very appealing in the context of nanotechnologies
[6]. The appeal of such memory-only computers lies in the fact that,
one can rely solely on simple, highly regular, and ultra dense fabrics
comprised of crossbar structures, to build powerful substrates capable
of performing arbitrarily complex computations.

For concreteness, Fig.1 shows a possible nanowire crossbar-based
memory structure, denoted the Harvard-CalTech nanomemory [16],
[17]. This particular architecture contains: (1) a crossbar nanowire
memory array comprised of nonvolatile nanoscale cross-switches
– possible realizations for the latter include suspended nanotube
switches [2], crossed nanowire diodes [16], and rotaxanes-based
molecular switches [1]; and (2) a row decoder and a column de-
coder – possible implementations of such decoders may rely on
crossed semiconductor nanowire (cNW) field-effect transistor (FET)
arrays [18], or FET arrays formed by modulation-doped nanowires
with top-gated microwires [17]. Of course, one can also implement
conventional logic gates using such programmable nanowire cross-
bar structures. Indeed, several architectures comprised of functional

Memory array

Nanowire
Cross-switch

Row power 
supply

Column
Power Supply

Row Decoder

Column Decoder

Memory array

Nanowire
Cross-switch

Row power 
supply

Column
Power Supply

Row Decoder

Column Decoder

Fig. 1. Nanowire crossbar-based memory structure.

nanoarrays implementing programmable logic array (PLA) planes
(e.g., OR and NOR) have been proposed, see e.g., [9], [10]. While
such architectures can provide universal logic functionality, i.e.,
their logic planes can be configured to compute any logic function,
performing defect mapping and self-configuration at such a fine level
of granularity (e.g., OR and NOR elements) can be quite challenging,
particularly when ultra dense nanochips are considered.1

In order to enable each nanochip to orchestrate its own self-testing
and self-configuration procedures (requiring minimum or no off-
line processing), the level of granularity at which defect mapping
is done should be ‘coarser’. To this end, in [11], we proposed a
fabric comprised of a grid of processing elements (PEs) capable of
executing 8-bit arithmetic and logic operations, and showed that one
could use the processing power of such a fabric to map defects –
namely, PEs may be efficiently used to test their neighbor PEs and
fabric connectivity. Before considering in more detail our self testing
ideas suggested in [11], we address key implementation issues and
practicality concerns pertaining the PEs themselves (not considered
in [11]).

A solution that we find very appealing would be to implement
each arithmetic and logic operation supported by a PE (e.g., addition,
subtraction, etc.) directly on one or more dedicated LUTs. The
underlying idea is to favor simplicity and regularity in the realization
and testing of PEs (see Section V), rather than trying to use ‘smaller’
(more traditional) gate-level implementations of a PE’s functional
units, since those would be more complex to successfully place and
route, as well as test – recall that our ultimate goal is to minimize
the need for off-line processing specific to individual chips, since
this may be an impediment to low-cost and fast mass-production.
Although the LUTs implementing such operations will be relatively
large when compared to those of traditional FPGAs (see Section VI),
they can be realized in a very compact and regular way, exploiting the
favorable characteristics of the array-based nanomemory architectures
alluded to above. Obviously, if excessive size becomes an issue, the
lookup tables themselves may be built out of banks of several such
crossbar structures, see e.g., [16], each storing results for a specific
range of operands. Or one may reduce the overall memory size by
building a ‘cascaded’ LUT implementation of the operation – see
examples in Section 6.1.

Naturally, the set of lookup tables comprising each PE needs to

1Note that memory-only computing fabrics would suffer from a similar
problem, if built out of ‘fine grained’ primitive programmable elements, say,
64 bit LUTs.



be programmed with the various supported operations, using again a
process as general (i.e., non-chip specific) as possible. A possible
direction towards achieving the latter would be to use a set of
auxiliary memories placed at the periphery of the nanochip, to drive
the programming of the PEs’ lookup tables. Specifically, a stochastic
scheme based on the principles described in [17] could be used to
derive a deterministic mapping between the actual auxiliary memory
addresses and the corresponding logic LUT entries (for a particular
operation). That mapping could then be used to appropriately program
the auxiliary memory. Ideally, the values stored on these auxiliary
memories could then be used to directly program the actual PEs’
lookup tables, without the need to leave the nanoscale boundary.
Details on this are beyond the scope of this paper and will be reported
elsewhere.

Note finally that some level of internal redundancy may be needed
in order to enable such ‘coarse’ PEs to be treated as primitive
elements in our methodology, that is, to ensure a likelihood of failure
within acceptable limits (say, no more that 20%, as suggested in [7]).
Such local redundancy may be incorporated into the PEs, for example,
by duplicating look-up tables (or table partitions), and making each
individual copy selectable via a ‘higher order’ bit. Specifically, during
the testing of a PE (as discussed in Section VI), for each logic table
entry, one would first test the value stored in one array (say, array
‘0’) and then the value stored in the other (array ‘1’), and then store
a bit indicating the specific copy to be considered for that particular
entry. This scheme can be trivially extended to incorporate more
redundancy, if need be.

III. DEFECT MAPPING AND CONFIGURATION ON SUITABLY

ARCHITECTED MEMORY-BASED NANOFABRICS

Our target nanofabric is architected as proposed in [11], shown in
Fig. 2. The basic configuration unit of the nanofabric, called a region,
is a grid of processing elements (PEs) and switching elements (SEs).
Fig.2 shows one such region – a 4×4 grid consisting of 8 PEs and 8
SEs. Recall that, as discussed above, our PEs are quite simple – they
perform standard 8-bit arithmetic/logic operations, and are comprised
of a small set of look-up tables (LUTs), implementing the various
operations, and simple control logic. We will show that the use of
such small PEs as the atomic fabric elements enables a simple and
yet effective testing methodology for defect mapping.

Each region of the nanofabric can be configured to execute a
small behavioral segment, called a basic flow. A set of representative
basic flows is shown in Fig.3, where each node represents an arith-
metic/logic operation to be executed by a PE, and edges represent data
transfers between operations, performed through an SE. Naturally, the
larger the resource redundancy in a region, the larger the number of
alternative configurations for its associated basic flow, and thus the
higher the probability of successfully instantiating it on that region.
Fig.4, for example, shows 4 out of 191 possible configurations in
which a basic flow f t3 can be mapped to a 4×4 region. Note that
whether a configuration is feasible depends on the defect distributions
in the region.

A critical observation we made in [11] is that by architecting the
nanofabric in terms of such regions, one decomposes the nanosys-
tem’s complex defect mapping and configuration problem into a set
of quasi-independent subproblems, each with the scope of a single
region and basic flow. Specifically, one can map defects in each
region, and then configure individual (limited size) basic flows around

�� ��

�� ��

MU1 MU2

Region

Mapping 
Unit

Architected nanofabric

Structural Behavioral

Basic Flow

Flow
Cluster

Nanosystem

Component

Application kernel

�� �� �� ��

�� �� �� ��

�� �� �� ��

�� �� �� ��

simplified

�� ��

�� ��

MU1 MU2

Region

Mapping 
Unit

Architected nanofabric

Structural Behavioral

Basic Flow

Flow
Cluster

Nanosystem

Component

Application kernel

�� �� �� ��

�� �� �� ��

�� �� �� ��

�� �� �� ��

simplified

Fig. 2. Hierarchy of design abstractions.

them, making the approach scalable 2. Indeed, if the number of
alternative configurations per region is not excessively high, a simple
table-look-up algorithm can be used to find a feasible configuration
for a basic flow.

To achieve a sufficiently high probability of successful configu-
ration in a scalable way, we have introduced an additional hierar-
chical/aggregation level in the fabric architecture, denoted mapping
unit (MU) [11]. Namely, one may allow a given basic flow to be
instantiated in one of n regions in an MU rather than a single (possibly
large) one. Or, more generally, one may allow m basic flows to be
instantiated in an MU containing n regions, where m is less than or
equal to n. Note that the notion of mapping unit creates a second
level of redundancy, while retaining the original simplicity of the
region-based defect mapping and configuration. In [11] we discussed
the complexity of routing inside a mapping unit can be effectively
controlled, by limiting the maximum number of regions per mapping
unit.

In summary, as shown in Fig.2, when designing a reconfigurable
nanofabric to implement the components of a nanosystem, the behav-
ior of each such component is first decomposed into a number of basic
flows – we may think of these as the ‘instruction selection’ phase
of the synthesis/compilation process. Then small sets of such basic
flows are assigned to the component’s mapping units, each with as
many regions as needed to achieve the target probability of successful
configuration.

In [11], we discussed the delay vs. yield trade-offs exposed by
this abstract hierarchical organization, and the implications of such
trade-offs on synthesis algorithms. In contrast, in this paper we
focus on critical realization and practicality issues. In particular, we
propose a detailed defect mapping methodology applicable to such
architected nanofabrics, including the design of support circuitry, and
discuss critical complementary trade-offs between testing coverage
and complexity.

IV. PREVIOUS RELATED WORK ON GROUP TESTING

Suppose we have n items, d of which are defective, and we are
interested in finding the best way to identify the d defective items.
As the name suggests, in group testing [20] one picks subsets of the
n items and determines whether there is a defective item in each such
subset or group, and then collectively determine the defects in all n

2A similar idea of using alternate configurations for sub-components, i.e.
tiles, has been proposed for fault-tolerant FPGAs in [19]. However, no
defect/fault detection method was proposed in that paper.



ft1 ft2 ft3 ft4 ft5

ft6

ft7

ft10ft9ft8 ft11

ft1 ft2 ft3 ft4 ft5ft5

ft6ft6

ft7ft7

ft10ft9ft9ft8ft8 ft11

Fig. 3. A representative set of basic flows.

Region

a b

c

e

d

Basic flow 
ft3

configuration 1

a

dc

e

b

a

b

dc

e

configuration 2

ba

c

d e

configuration 3

b

c

d e

a

configuration 4

Region

a b

c

e

d

Basic flow 
ft3

configuration 1

a

dc

e

ba

dc

e

b

a

b

dc

e

configuration 2

a

b

dc

e

configuration 2

ba

c

d e

configuration 3

ba

c

d e

configuration 3

b

c

d e

a

configuration 4

b

c

d e

a

configuration 4

Fig. 4. Map a flow to a region.

items based on the testing results of all groups. In conventional group
testing methods, it is assumed that a test group gives a ‘positive’ if
and only if all the items in the group are not defective [20]. Thus,
those methods work only when the defect density is not high (see
[8]).

To address the challenge posed by the high defect densities pro-
jected for nanotechnologies, a two-phase group testing methodology
was proposed in [15]. During the first ‘probability-assignment’ phase,
one attempts to either get the exact number of defects or a crude
estimate for the number of defects e.g., none, some, or many, in
the group. Using Bayesian methods, one then analyzes the outputs
of all test groups to obtain defect probabilities for individual items.
As a result, at the end of this first phase all items are classified
into two sets: those with high probability of being good and those
with high probability of being defective. During the second ‘defect
location’ phase, conventional group testing is applied, but only to the
subset of items likely to be good, with the goal of identifying those
which are defective. Unfortunately, this second phase of the proposed
group testing methodology requires unlimited connectivity among the
nanofabric’s components [15]. The CAEN-BIST method proposed
in [21] improves over [15], in that it does not require unlimited
connectivity. Still, approaches relying on these two methods would
ultimately require that an off-line mapping of the target functionality
‘around’ the identified defects be performed of a per-chip basis, and
thus will not scale for large nanosystems.

V. TMR-BASED GROUP TESTING METHODOLOGY

In this section we define a novel group testing methodology
aimed at effectively handling the high defect densities projected for
nanotechnologies.

A. Group Testing with TMR Test Tiles

The idea of performing defect mapping on a nanofabric’s regions
using Triple-Module-Redundancy (TMR) test tiles was first proposed
by us in [11]. A TMR test tile (or group) is formed by configuring
four PEs, where one plays the role of an arbiter for the outputs of
the other three – the latter are referred to as the tile’s peer PEs. These
small tiles can be configured systematically, and can usually locate

defective PEs and/or connections3 in the region (see also Section VI).
Since simplicity is of paramount importance to enable self-testing

of large nanofabrics, we propose a simple conservative algorithm to
obtain a (partial) defect map of a region when applying a set of
TMR test tiles to it. Specifically, we start by assuming that all PEs
and connections in a region are defective. Then, for each tile in the
testing suite, if the tile ‘passes’ (see details in Section VI) we update
the set of PEs and connections that are known to be good, otherwise
we do nothing. Clearly, this algorithm is conservative, in that bad PEs
or connections are very unlikely to be marked as good 4, yet good
PEs/connections may be marked as bad, i.e., false negatives can be
generated. Note, however, that the probability of such false negatives
can be made very small in our approach. Specifically, since each PE is
included and tested in different tiles (see Section 5.3), the redundancy
in the testing process makes it quite effective in identifying defects.
Note, finally, that this simple algorithm is amenable to a lookup table
(LUT) implementation, thus providing a good foundation towards
minimizing offline processing.

The performance measure for our flow-oriented defect testing
method is flow coverage, which is defined as one minus the probabil-
ity of false negatives, when configuring a basic flow. It has a direct
impact on flow yield, which is a primary figure of merit for a design,
defined as the probability of successfully configuring a flow on a
target region. Flow yield is given by the probability of successfully
configuring a flow on a region with a perfect defect map minus
the probability of a false negative. It thus depends upon the flow
characteristics, such as size and connectivity, as well as on the flow
coverage of the test method.

B. Considerations on Region Size

As alluded to before, it is critical to contain the complexity of
the defect mapping and chip configuration tasks, so that both can be
addressed/performed using the processing power and storage capacity
of the actual nanochip. The 4×4 grid, shown in Fig.2, realizes a
specific trade-off between configuration capacity, i.e., the amount of
raw redundant capacity provided at the region level, and complexity,
i.e., the number of TMR test tiles and the number of alternate
configurations required to achieve a good flow coverage. For example,
adopting a larger region size, say, an 8×8 grid, would increase the
amount of configuration capacity at the region level, and thus increase
flow yield. However, it would also lead to a tremendous increase
on the number of TMR test tiles one can configure on a region –
from 58 for a 4×4 region, to 866 for a 8×8 region, as well as an
exponential growth on the number of alternate configurations for each
basic flow – this is shown in Fig.5. Thus an increase in the region size
would lead to excessive memory requirements to support the self-
configuration phase. As we pointed out in [11], the configuration
capacity (and thus yield) can alternatively be increased by adding
more regions to a mapping unit, and/or using smaller basic flows,
etc. Thus, keeping the size of the fabric’s regions relatively small is
a good strategy to control complexity and ensure practicality for our
approach. Therefore, in this paper we consider the 4×4 grid region
shown in Fig.2.

3A connection represents the set of all possible direct paths between two
diagonally or vertically or horizontally adjacent PEs through a switching
element.

4It is assumed that a PE configured as an arbiter which is faulty is
very unlikely to generate a false positive, i.e., generate a ‘correct’ diagnosis
message. This can be induced by requiring the arbiter to generate a long
signature bit-stream together with the arbitration result.



1.0E+00
1.0E+01
1.0E+02
1.0E+03
1.0E+04
1.0E+05
1.0E+06

ft1 ft2 ft3 ft4 ft5 ft6 ft7 ft8 ft9 ft10 ft11

4x4 grid
8x8 grid

Fig. 5. Number of possible configurations for representative basic flows.

C. TMR Test Tile Selection

As mentioned in the previous section, a total of 58 TMR test tiles
can be configured on a 4×4 region. Yet, by using a smaller number
of tiles may still achieve good flow coverage, while reducing testing
time and required configuration memory. In this section, we address
the TMR test tile selection problem, i.e., the selection of a set of tiles
that realizes a good trade-off between flow coverage and complexity
in terms of testing time and size of configuration memory. Clearly,
the more tiles are used, the better the defect map one obtains, i.e.,
the better the flow coverage, but the higher the complexity.

We used extensive Monte Carlo simulation to estimate the flow
coverage for each basic flow achieved by alternative suites of TMR
test tiles, assuming a wide range of defect scenarios representing
potential defect distributions for future nanotechnologies. Specifi-
cally, we assume probabilities of failure for PEs operating as generic
processors, denoted Pe, in the range of 1–20%, probabilities of failure
for PEs operating as arbiters, denoted Pa, in the range of 0.5-10% 5,
and probabilities of failure for connections, denoted Pc, in the range
of 0.1–2% 6.

Fig.6 shows the results obtained using different sets of 12 TMR
test tiles, for defect regime (Pe,Pa,Pc) = (10,5,1)%. Standard suite
denotes the 12 TMR test tiles shown in Fig.7. Suite1 – Suite3 denote
three alternative, randomly selected suites of 12 TMR test tiles, all
of which evenly spread over the PEs and connections in the region,
i.e., each PE and connection in the region is covered by ‘roughly’
the same number of tiles in the suite. The simulation results in Fig.6
suggest that any suite of 12 TMR test tiles which is evenly spread out
among all PEs and connections provides a fairly good flow coverage.
Similar results were obtained for other defect regimes. These results
also show that no single suite of TMR test tiles can provide maximal
coverage for all basic flows. Thus, in terms of flow coverage, any
12 TMR test tile suite with even spread is a good candidate, yet the
so called standard suite (see Fig.7) enables one to minimize overall
testing cost in time, since its tiles can be configured as pairs and
tested in parallel.

0

0.2

0.4

0.6

0.8

1

ft1 ft2 ft3 ft4 ft5 ft6 ft7 ft8 ft9 ft10 ft11

standard suite
suite1
suite2
suite3

Fig. 6. Flow coverage for basic flows using various suites of 12 TMR test
tiles when (Pe,Pa,Pc) = (10,5,1)%.

A final interesting empirical observation is that using more than
12 TMR test tiles brings negligible improvement in flow coverage,

5See Section VI for a discussion on the relative complexity of general
computation vs. arbitration.

6One would expect Pc << Pe, since our LUT-based PEs are substantially
more complex than a switching element/connection.

A

A

T1

T2
A

A
T3

T4

A

A
T5 T6

A

A

T7

T8

A

A
T9 T10

A

A

T11

T12

A

A

T1

T2
A

A
T3

T4

A

A
T5 T6

A

A

T7

T8

A

A
T9 T10

A

A

T11

T12

Fig. 7. The standard suite of TMR test tiles. (Arbiter of each tile is labeled
’A’.)

while using fewer than 12 tiles results in a significant degradation
in flow coverage. This is illustrated in Fig.8, where the average flow
coverage (computed over all basic flows) obtained using testing suites
including 6–14 TMR test tiles is shown. The two extra tiles in the
suite of 14 tiles use the 2 internal PEs as arbiters and cover 6 PEs
except the 2 corner PEs. The suites with fewer than 12 tiles were
obtained by removing tiles from the standard suite according to the
tile numbering order shown in Fig.7.

In summary, we have empirically determined that our standard
suite of 12 TMR test tiles achieves a good trade-off between flow
coverage and complexity, and we have thus adopted it in our defect
mapping methodology.

0.7

0.75

0.8

0.85

0.9

0.95

1

6 8 10 12 14

Number of tiles

A
ve

ra
g

e 
fl

o
w

 c
o

ve
ra

g
e

(Pe,Pa,Pc)=(1,0.5,0.1)%

(Pe,Pa,Pc)=(10,5,1)%

(Pe,Pa,Pc)=(20,10,2)%

Fig. 8. Average flow coverage under different defect scenarios, and varying
number of test tiles .

VI. SUPPORTING TMR-BASED GROUP TESTING

In this section we discuss our proposed TMR-based group testing
methodology in more detail, presenting its required support circuitry,
and showing that such support is commensurate with the small
complexity of the processing elements (PEs) – a critical point in
terms of demonstrating the effectiveness of our approach. Recall that
the standard 8-bit arithmetic/logic operations are implemented in our
PEs as nanomemory-based lookup tables (LUTs), with some simple
control logic, and possibly redundancy to meet the target reliability at
this granularity. For simplicity, the numbers presented below estimate
the memory size required by each such operation in terms of the
required number of logic LUT entries, assuming no local redundancy.
So, we provide a minimum baseline ‘cost’, but this can then be
adjusted to capture the degree of local redundancy required.

To keep the implementation simple, the testing procedure for each
TMR testing tile is divided into two steps. The first step tests the
connectivity required by the tile (from peer PEs to the TMR tile’s
arbiter PE, etc.), and the basic control logic for the peer PEs (e.g.,
operation selection, etc.) During this step, the tile’s peer PEs are
all configured to perform a common operation, and their results
are compared by the arbiter PE for a few inputs. The second step
exhaustively tests the correctness of all of the peer PE’s operations,
i.e., checks if all their LUT entries are defect-free. During the second



step, we scan through all entries of the LUTs (implementing the
various arithmetic/logic operations supported by the tile’s peer PEs),
again using the tile’s arbiter to determine the correctness of each
result. This second step may be also used to correct errors in the
LUTs - see Section 6.2).

A. Step 1 – Testing Control/Connectivity

As mentioned above, to test the basic control and connectivity
of the PEs in a TMR tile, the three peer PEs are configured to
perform a common operation, say, 8-bit addition, and the arbiter PE
is configured to function as a majority-rule based word voter. A short
input stream (stored locally to each PE) is then injected into the inputs
of the three peer PEs, and their corresponding outputs are sent to the
arbiter PE – using its voting/diagnosis circuitry, the latter can signal
a ‘pass’ for this phase of the test or a ‘failure’. Since a ‘pass’ may
happen with 0 or 1 faulty PE/connection, the arbiter identifies also
the defective PE/connection, when one exists.

Since all PEs in a region will perform the arbitration function in
some TMR test tile, our methodology requires incorporating support
circuitry in all PEs to perform a majority-rule based 8-bit word voting
function. In [22] a word voter design using logic gates is proposed,
yet the failing input is not identified by the voter, making it unsuitable
to support in our context. We have thus developed an 8-bit word voter
using LUTs which is capable of identifying faulty PEs/connections
as needed – see Fig.9. Our design has two stages – a vote stage and
a diagnosis stage. The first stage is comprised of eight parallel 1-bit
majority voters, each accepting inputs from the three peer PEs in the
TMR tile – namely, bi j represents the ith bit of data from the jth
PE. The output of each 1-bit voter encodes the failing PE for the
corresponding bit (if any), as shown in Fig.9. The outputs from all
eight 1-bit voters are then concatenated/merged to form a 16-bit input
to a diagnostic unit. The diagnostic unit checks if different PEs fail
for different bits. If yes, it signals the test to fail; otherwise, it signals
the test to pass. In addition it returns the ID/code of the failing PE
(if one exists). Finally, as shown in Fig.9, our word voter has an
additional output, the actual majority output word – this additional
output is required only if one wishes to implement self-repair, see
Section 6.2.

Bit0
Voter

Bit1
Voter

Bit7
Voter

Diagnostic 
Unit

3

2

2

2

16

00: no failing PE

01: PE1; 10: PE2; 11: PE3

100: fail

000: pass w/o fail

001: pass w/ PE1 

010: pass w/ PE2

011: pass w/ PE3

b0
b1

b7

b01
b02

b03

b11
b12

b13

b71
b72

b73

Majority 
output

Test pass/fail & 
failing PE code

Bit-Fail PEBit0
Voter

Bit1
Voter

Bit7
Voter

Diagnostic 
Unit

3

2

2

2

16

00: no failing PE

01: PE1; 10: PE2; 11: PE3

100: fail

000: pass w/o fail

001: pass w/ PE1 

010: pass w/ PE2

011: pass w/ PE3

b0
b1

b7

b01
b02

b03

b01
b02

b03

b11
b12

b13

b71
b72

b73

Majority 
output

Test pass/fail & 
failing PE code

Bit-Fail PE

Fig. 9. 2-stage LUT-based 8-bit word voter.

The complexity of the word voter is as follows. Each 1-bit majority
voter is implemented as an LUT with eight entries (note that we use
three input bits, bi1, bi2 and bi3, as look-up address for the table
associated with ith 1-bit voter), and each such entry stores three bits:
two bits encode the failing PE for ith bit, and one bit gives the
majority output. The diagnostic unit is implemented as one LUT with

216 entries, where each entry stores three bits, one to encode pass/fail
information and two to encode the failing PE. The total number of
bits in the word voter is thus 3 ∗ 8 ∗ 8 + 3 ∗ 216. Note that this is
about 1/3 of the complexity of the LUT for an 8-bit addition (which
requires 9∗216 bits), which is one of the arithmetic/logic operations
supported on a PE.

Although this overhead is relatively small, one may further reduce
the total number of bits in the LUTs required by the word voter, by
cascading diagnostic units, see Fig.10. In this design, the voting is
still preformed in one stage (exactly as before, see Fig.9), yet the
diagnostics are now implemented in three stages. The first diagnosis
stage contains four 2-bit diagnostic units, each implemented as a 16-
entry LUT (with three bits stored in each entry, as before). The second
stage uses two 4-bit diagnostic units, each implemented as a 64-entry
LUT with three bits entries (encoded as before), and the third stage
uses a single 8-bit diagnostic unit, implemented as a 64-entry LUT,
with again, 3-bits per entry. Thus, the total number of bits in the LUTs
of this cascaded voter design is only 3∗8∗8+3∗4∗16+2∗3∗64+
3∗64 = 960, i.e., it requires only 0.5% of the bits used by our previous
(non-cascaded) design. When compared with the previous design, the
cascaded 4-stage arbiter requires much less storage, yet uses more
complex interconnects. Note that a similar cascading method can be
used to implement a PEs’ standard arithmetic/logic operations such
that, again, less storage is required at the expense of more complex
interconnects. Selecting the best implementation will depend on the
defect characteristics of a specific nanotechnology.

Bit0
Voter

Bit1
Voter

…

Bit7
Voter

2

2

2

Bit6
Voter

2

4

4

2-bit
Diag

2-bit
Diag

3

3

3

3

4-bit
Diag

4-bit
Diag

6

6

8-bit
Diag

3

3

6 3

b01
b02

b03

b11
b12

b13

b61
b62

b63

b71
b72

b73 b0
b1

b7

Majority 
output

b6

Test 
pass/fail 
& failing 
PE code

Bit0
Voter

Bit1
Voter

…

Bit7
Voter

2

2

2

Bit6
Voter

2

4

4

2-bit
Diag

2-bit
Diag

3

3

3

3

4-bit
Diag

4-bit
Diag

6

6

8-bit
Diag

3

3

6 3

b01
b02

b03

b01
b02

b03

b11
b12

b13

b61
b62

b63

b71
b72

b73 b0
b1

b7

Majority 
output

b6

Test 
pass/fail 
& failing 
PE code

Fig. 10. 4-stage LUT-based word voter.

B. Step 2 – Testing Functional LUTs

As mentioned above, during the second test step, we scan the
entries of all functional LUTs in the TMR tile’s three peer PEs, and
use the word voter of the arbiter PE to identify defective PEs (i.e., PEs
with incorrect LUT entries). Fig.11 shows the testing circuitry used to
scan all LUT entries. The 16-bit incrementer used by each peer PE is
responsible for incrementing the index to the PE’s LUT entries, and
is designed such that it will increment only after receiving a pass
from the voter – observe that, as shown in Fig.11, the “pass/fail”
signal generated by the voter is fed back to the enable port of the
incrementer. If for any entry (i.e., operation result), the voter detects
an error (i.e., there is no majority), the scan test will fail.

Our implementation of the 16-bit incrementer uses two cascaded
LUTs (not shown in Fig.11), where the first stage LUT implements
an 8-bit adder with one input fixed as one, and the second LUT
implements an 8-bit adder with the carry output from the first LUT
being one of the inputs. Accordingly, its size is 9∗29 +8∗29 = 17∗29

bits (i.e., 1.5% of a full 8-bit adder).
In our current implementation, if a PE is the minority for a

particular LUT entry, and another PE is the minority for a different



Functional
LUT
(PE1)

Functional
LUT
(PE2)

Functional
LUT
(PE3)

Word 
Voter

inc

inc

inc

16

16

16

8

8

8

3

Pass/fail

8

Majority 
output

Test pass/fail 
& failing PE 
code

16

16

16

Functional
LUT
(PE1)

Functional
LUT
(PE2)

Functional
LUT
(PE3)

Word 
Voter

inc

inc

inc

16

16

16

8

8

8

3

Pass/fail

8

Majority 
output

Test pass/fail 
& failing PE 
code

16

16

16

Fig. 11. Exhaustive testing of LUT entries.

LUT entry, the scan test will fail. We are thus favoring simplicity in
the support circuitry – namely, this simple decision process can be
implemented using a single register in the voter, which records the
failing PE, and a two bit comparator. However, as an enhancement to
the design, self-repair capabilities may be added. This can be done
by incorporating extra self-repair control logic (possibly implemented
using LUTs as well) in the feedback loop from the voter output to the
enable port of the incrementer. The inputs to the self-repair control
logic would be the “pass/fail” signal from the voter, and the encoding
of the failing PE. Its outputs are the enable signal for the incrementers
and the write enable signal for all the three LUTs. In this more
complex implementation, once the voter detects an incorrect entry in
a PE’s LUT (i.e., the other two LUTs are identical/correct), it can
enable writing back the majority output to the incorrect entry of the
LUT. The incrementer will then be halted, by resetting the enable
signal, and the entry would be rescanned after the repair occurs. If
the repair is successful, the incrementer would resume incrementing,
thus selecting the next entry. If the repair fails (indicating a hard fault,
e.g., a ’broken’ crossing switch), the voter stores the ID of the failing
PE, as before. Although adding self-repair features is appealing, the
impact on actual yield of incorporating this more complex circuitry on
such simple PEs is not obvious, and is likely to be highly dependent
of the specific fault regimes of the target technology.

VII. EXPERIMENTAL RESULTS AND ANALYSIS

A. Experimental Methodology

We evaluated the proposed approach using the set of benchmark
kernels shown in Table I. The flow cover adopted for each of the
kernels is given in the table – e.g., the dataflow graph (DFG) of the
two-dimensional discrete-cosine-transform (DCT) kernel is covered
by four basic flows of type f t6 (see Fig.3). Note that, for each kernel,
there are many possible flow covers, yet for the experiments that
follow, it suffices to select a ’good’ cover. Moreover, for each of the
kernels (and associated cover), we generated a component design with
maximum potential configuration capacity, i.e., we mapped each basic
flow to an individual mapping unit (MU). For instance, the component
design for the DCT kernel consists of 4 MUs, each implementing a
basic flow of type f t6.

For each kernel, we first used extensive Monte Carlo simulation
to estimate the probability of successful configuration on a region of
each basic flow used on that kernel’s cover (i.e., flow yield), assuming
distinct defect regimes (Pe,Pa,Pc). Recall that Pe,Pa,Pc denote the
probabilities of failure for processing elements (PEs) operating as
a generic processor, PEs operating as arbiters, and connections,
respectively. Specifically, given a tuple (Pe,Pa,Pc), we generated a
large number of defect realizations on a region, using the TMR-
based group testing algorithm described in Section V-A to obtain a
(partial) defect map for each such region instance. We then used a

TABLE I
BENCHMARK KERNELS.

Kernels DFG Cover with basic flows
FIR Filter unrolled (FIRu) f t6, f t6 , f t6, f t6 , f t6 , f t6 , f t6, f t6
Auto-Regression Filter (AR) f t2, f t4, f t4 , f t2 , f t4 , f t4
Avenhous Filter mod (AF2) f t3, f t3 , f t2, f t10
Avenhous Filter (AF1) f t3, f t4 , f t2, f t10
2D-DCT (DCT) f t6, f t6 , f t6 , f t6
FIR Filter (FIR) f t6, f t6 , f t6 , f t6
FFT f t5, f t5

simple table-look-up algorithm to find a feasible configuration for
each basic flow used in the kernel’s cover on that region. In this way,
the yield for each such basic flow was estimated with an adequate
confidence level.

Yield at the next level of hierarchy, i.e., MU level, was then
computed assuming an independent distribution of defects across
regions. The basic component designs considered in all our exper-
iments correspond to the special case of m identical basic flows
being mapped into n regions in an MU with m = 1. The yield, i.e.,
probability of successfully configuring the m flows, is directly given
by:

PMU =
n

∑
i=m

(
n
i

)Pi
r(1−Pr)n−i (1)

where Pr is the estimated yield for the basic flow on a region, obtained
as discussed before.

Finally, yield at the component level was computed. Specifically,
the probability of failing to configure all of the kernel’s flows on a
component containing k MUs, i.e., one minus yield, is given by

Pf = 1−
k

∏
i=1

PMUi (2)

where PMUi is the yield of the ith mapping unit of the component.

B. Experimental Results

Our first experiment aims at determining the maximum achievable
yield for each of the kernels, using our defect mapping technique.
Fig.12 shows the probability of failure to configure each of the
considered kernels on a corresponding component – Pf , when varying
the number regions provided per MU, under defect regimes of
(Pe,Pa,Pc) = (20,10,2)%. As shown in the figure, all the kernels
can be reliably configured on the target nanofabric with a very small
failing probability, even when the defect density of PEs is as high as
20%, suggesting that our testing method provide sufficient coverage
for the target nanofabric. Note also that the failing probability
decreases exponentially with the number of regions in an MU, i.e.,
as capacity increases.

Clearly, the granularity/complexity of a PE will directly impact its
failing probability, i.e. Pe, and in turn yield. (Recall that our PEs
comprise a set of LUTs implementing standard 8-bit arithmetic/logic
operations.) Fig.13 shows the probability of failure to configure
each kernel when Pe varies from 1% to 20% (where Pa = 0.5Pe

and Pc = 0.1Pe), assuming that each MU contains the maximum
number of regions (i.e., nine [11]). The figure clearly exhibits the
significant impact of Pe on yield for these kernels, suggesting the
critical importance of keeping the granularity and complexity of
PEs as low as possible, as well as the potential need to incorporate
redundancy into PE designs in order to place Pe in an acceptable
range.



1 2 3 4 5 6 7 8 9
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

 Number of regions in one MU

 P
f

FFT
AR
AF1
AF2
DCT & FIR
FIRu

Fig. 12. Probability of failure to configure the kernels when (Pe,Pa,Pc) =
(20,10,2)%.

0 5 10 15 20
10

−40

10
−35

10
−30

10
−25

10
−20

10
−15

10
−10

10
−5

 Pe (%)

 P
f

FFT
AR
AF1
AF2
DCT & FIR
FIRu

Fig. 13. Probability of failure to configure the kernels when varying Pe.

Finally, we analyze the impact of the complexity of the arbiter
circuitry. Fig.14 shows the probability of failure to configure each
kernel when varying Pa, i.e., probability of failure of a PE operating
as an arbiter, from 1% to 20%, with fixed Pe = 10% and Pc = 1%,
assuming again that each MU contains the maximum number of
regions. As shown in the figure, the yield shows little sensitivity to
variations on Pa when Pa is less than Pe. Indeed, in our group testing
method, each arbiter PE in a tile will be re-tested multiple times in
other test tiles. Thus, false negatives resulting from faulty arbiters in a
tile will most likely be corrected by other tiles. In this way, the ‘arbiter
reliability bottleneck’ issue in traditional TMR (i.e. the reliability of
a TMR output is bounded by that of the arbiter) is circumvented.
However, as also shown in the figure, when Pa gets larger than Pe, it
will eventually compromise the component yield. Therefore, it is still
important to keep the arbiter design not overly complex, see Section
VI. Moreover, the result suggests a minimal granularity for the PE
circuitry, i.e., the complexity of the latter should be lower bounded
by the complexity of the arbitration circuitry.

0 5 10 15 20
10

−40

10
−35

10
−30

10
−25

10
−20

10
−15

10
−10

10
−5

10
0

 Pa (%)

 P
f

FFT
AR
AF1
AF2
DCT & FIR
FIRu

Fig. 14. Probability of failure to configure the kernels when varying Pa.

VIII. CONCLUSIONS

We have implemented a novel TMR-based group testing technique,
aimed at enabling the design of defect tolerant nanosystems via
reconfiguration, on appropriately architected memory-based nanofab-
rics. Possible designs for the required support circuitry have been
presented and analyzed. Critical trade-offs between testing coverage
and complexity have also been discussed. The effectiveness of the
our defect testing approach has been experimentally demonstrated on
representative benchmark kernels. Our future work includes develop-
ing the infrastructure for bootstrap programming of the PE’s look-up
tables and investigating the impact of adding self-repair capability on
the nanofabrics.

REFERENCES

[1] C. P. Collier et al., “Electronically configurable molecular-based logic
gates,” Science, vol. 285, pp. 391–94, July 1999.

[2] T. Rueckes et al., “Carbon nanotube based non-volatile random access
memory for molecular computing,” Science, vol. 289, pp. 94–97, 2000.

[3] Y. Cui and C. M. Lieber, “Functional nanoscale electronic devices
assembled using silicon nanowire building blocks,” Science, vol. 291,
pp. 851–853, 2001.

[4] SEMATECH, “International Technology Roadmap for Semiconductors,”
2004, http://www.itrs.net/Common/2004Update/2004Update.htm.

[5] S. K. Shukla and R. I. Bahar, Nano, Quantum and Molecular Computing:
Implications to High Level Design and Validation. Kluwer Academic
Publishers, Boston, MA, 2004.

[6] J. R. Heath et al., “A defect-tolerant computer architecture: Opportunities
for nanotechnology,” Science, vol. 280, pp. 1716–21, June 1998.

[7] G. Bourianoff, “The future of nanocomputing,” Computer Magazine, pp.
44–49, Aug. 2003.

[8] W. B. Culbertson et al., “Defect tolerance on the Teramac custom com-
puter,” in Proc. IEEE Symp. FPGA’s for Custom Computing Machines,
1997, pp. 116–123.

[9] S. C. Goldstein and M. Budiu, “Nanofabrics: Spatial computing using
molecular electronics,” in Proc. Int. Symp. Computer Architecture, Jul.
2001, pp. 178–191.

[10] A. DeHon, “Array-based architecture for FET-based nanoscale electron-
ics,” IEEE Trans. Nanotechnology, vol. 2, no. 1, pp. 23–32, 2003.

[11] M. F. Jacome, C. He, G. de Veciana, and S. Bijansky, “Defect tolerant
probabilistic design paradigm for nanotechnologies,” in Proc. Design
Automation Conf., 2004, pp. 596–601.

[12] C. He, M. F. Jacome, and G. de Veciana, “A reconfiguration-based
defect-tolerant design paradigm for nanotechnologies,” IEEE Design &
Test of Computers, vol. 22, no. 4, pp. 316–326, July-August 2005.

[13] J. Han and P. Jonker, “A system architecture solution for unreliable
nanoelectric devices,” IEEE Trans. Nanotechnology, vol. 1, no. 4, pp.
201–208, 2002.

[14] ——, “A defect- and fault-tolerant architecture for nanocomputers,”
Nanotechnology, vol. 14, pp. 224–230, 2004.

[15] M. Mishra and S. C. Goldstein, “Defect tolerance at the end of the
roadmap,” in Proc. Int. Test Conf., 2003.

[16] M. M. Ziegler et al., “Scalability simulation for nanomemory systems
integrated on the molecular scale,” Ann. New York Academy of Science,
vol. 1006, pp. 312–330, 2003.

[17] A. DeHon, P. Lincoln, and J. E. Savage, “Stochastic assembly of sub-
lithographic nanoscale interfaces,” IEEE Trans. Nanotechnology, vol. 2,
no. 3, pp. 165–174, 2003.

[18] Z. Zhong et al., “Nanowire crossbar arrays as address decoders for
integrated nanosystems,” Science, vol. 302, pp. 1377–1379, November
2003.

[19] J. Lach, W. H. Mangione-Smith, and M. Potkonjak, “Low overhead fault-
tolerant FPGA systems,” IEEE Trans. VSLI Systems, vol. 6, no. 2, pp.
212–221, 1998.

[20] D. Z. Du and F. K. Hwang, Combinatorial group testing and its
applications, 2nd edition. World Scientific Publishing, Singapore, 2000.

[21] J. G. Brown and R. D. Blanton, “CAEN-BIST: Testing the nanofabric,”
in Proc. Int. Test Conf., 2004, pp. 462–471.

[22] S. Mitra and E. J. McCluskey, “Word-voter: A new voter design for triple
modular redundant systems,” in Proc. IEEE VSLI Test Symp., 2000, pp.
465–470.


